Magnetic Nature of Intrinsic Carbon Defects
نویسنده
چکیده
Magnetism is a phenomenon that has been known for a very long time. Iron, cobalt, and nickel are known ferromagnetic materials. It is less known, probably because it is so unexpected, that even carbon can have ferromagnetic behaviour. Experimentally this has been confirmed on many occasions within the last decade. Ferromagnetic behaviour of carbon provides an example of the fact that magnetism is not well understood at the atomic scale. One of the aims of this thesis is to study and understand possible sources of ferromagnetism in carbon systems, thereby creating a possible foundation for the next generation of ferromagnets. Carbon itself is a very interesting substance with numerous interesting properties. In the late 1980s and early 1990s new carbon allotropes were found, such as fullerenes (bucky balls) and nanotubes (cylinders), next to the old ones (graphite and diamond). Especially nanotubes have been considered as candidates for several future applications. Whatever the fabrication process, all allotropes of carbon will have intrinsic defects, and in this thesis the role of these defects in carbon magnetism is investigated in detail. Studying magnetism requires “state-of-the-art”-methods due to the demand of high accuracy because energy differences between non-magnetic and magnetic cases are usually very small. Ab initio methods are usually the best for such studies, especially methods based on the density functional theory. Here, a state-of-art method which is based on the density functional theory and implementing projector augmented waves to model the properties of carbon is used. Adatoms and vacancies are found to have magnetic moments of 0.5 μB and 1.0 μB, respectively. In practice, however, the high mobility of adatoms on graphene at room temperature would suggest that many of them recombine with vacancies or cluster together, destroying their magnetism. Despite the indications that a barrier to vacancy-interstitial pair recombination exists, efficient recombination seems to be confirmed by He-irradiation experiments. The magnetic signal was small despite the fact that the amount of defects created by the He ions is large. Also, the effect of the changing electronic structure on the magnetic moments of adatoms and vacancies is studied with the help of nanotubes. On nanotubes, the magnetism of an adatom decreases because of the curvature and differences in electronic structures while the magnetic moment of a vacancy in all but strongly metallic tubes is destroyed. The experimental demonstration of induced ferromagnetism by proton irradiation on graphite indicates a promising direction for creating a magnetic carbon system in a controllable way. Simulations indicate that this is due to a combination of a hydrogen atom trapping at vacancies and pinning of mobile adatoms, producing magnetic C-H complexes and uncompensated vacancies.
منابع مشابه
Magnetic properties and diffusion of adatoms on a graphene sheet.
We use ab initio methods to calculate the properties of adatom defects on a graphite surface. By applying a full spin-polarized description to the system we demonstrate that these defects have a magnetic moment of about 0.5micro(B) and also calculate its role in diffusion over the surface. The magnetic nature of these intrinsic carbon defects suggests that it is important to understand their ro...
متن کاملDetermination of the hyperfine magnetic field in magnetic carbon-based materials: DFT calculations and NMR experiments
The prospect of carbon-based magnetic materials is of immense fundamental and practical importance, and information on atomic-scale features is required for a better understanding of the mechanisms leading to carbon magnetism. Here we report the first direct detection of the microscopic magnetic field produced at (13)C nuclei in a ferromagnetic carbon material by zero-field nuclear magnetic res...
متن کاملVacancy Defects Induced Magnetism in Armchair Graphdiyne Nanoribbon
Spin-polarized electronic and transport properties of Armchair GraphdiyneNanoribbons (A-GDYNR) with single vacancy (SV), two types of configurations fordouble vacancy (DV1, DV2) and multi vacancy (MV) defects are studied by nonequilibriumGreen’s function (NEGF) combined with density functional theory (DFT).The results demonstrate that the A-GDYNR with the SV has the lowe...
متن کاملThe Effect of Annealing, Synthesis Temperature and Structure on Photoluminescence Properties of Eu-Doped ZnO Nanorods
In this study un-doped and Eu-doped ZnO nanorods and microrads were fabricated by Chemical Vapor Deposition (CVD) method. The effects of annealing, synthesis temperature and structure on structural and photoluminescence properties of Eu-doped ZnO samples were studied in detail. Prepared samples were characterized using X-Ray diffraction (XRD), scanning electron microscopy (SEM), particle size a...
متن کامل13C NMR chemical shift of single-wall carbon nanotubes.
We compute the magnetic shielding tensor within the London approximation and estimate the Knight shift of single-wall carbon nanotubes. Our results indicate that high resolution 13C NMR should be able to separate the metallic and insulator character of the nanotubes since a 11 ppm splitting is predicted from the respective resonances. As a model for disorder, bending, and defects in these struc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005